Даны вершины треугольника АВС: А(4; 6), В (-4; 0), С (-1 ;- 4).
Находим уравнения прямых АВ и ВС (с общей вершиной В).
АВ: (х - 4)/(-8) = (у- 6)/(-6) сократим знаменатели не -2.
(х - 4)/4 = (у- 6)/3
3х - 12 = 4у - 24
3х - 4у + 12 = 0.
ВС: находим аналогично 4х + 3у + 16 = 0.
Уравнение двух биссектрис (пары смежных углов) находим в виде:
(a1x+b1y+c1)/√((a1)²+(b1)²) = ±(a2x+b2y+c2)/√(a2²+b2²).
Так как знаменатели равны, то приравниваем числители.
3х - 4у + 12 = 4х + 3у + 16.
Получаем уравнение биссектрисы угла В:
х + 7у + 4 = 0.
Из условия нам известно, что катеты прямоугольного треугольника равны √7 см и 3 см.
Для того чтобы найти гипотенузу треугольника мы будем использовать теорему Пифагора.
Вспомним ее.
Квадрат гипотенузы равен сумме квадратов катетов.
a2 + b2 = c2.
Подставим известные значения и решим полученное уравнение.
(√7)2 + 32 = x2;
7 + 9 = x2;
x2 = 16;
Извлечем квадратный корень из обеих частей уравнения и получим:
x1 = 4; x2 = -4.
Второй корень не подходит, так как длина катета не может быть отрицательным числом.
ответ: 4.
должно быть верно)