1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
На чертеж, будет видно: что АВСО - ромб у которого все стороны равны радиусу, треугольники АВО и ВСО - равносторонние и углы которых равны 60 градусам.
треугольник АСD - также равносторонний, он вписан в окружность и делит ее длину на три части, поэтому градусная мера дуг АD=СD=120 градусам. АВ=ВС=60 градусам.
проверка: 60+60+120+120=360 градусов
Углы 4-х угольника АВСD равны:
угол В = 60+60=120 градусам,
угол D = 60 градусам
угол А = углу С = 30+60= 90 градусам.
проверка : А+В+С+D= 90+120+90+60=360