М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
darytish
darytish
12.11.2022 14:05 •  Геометрия

Восновании пирамиды лежит равнобедренный треугольник с боковой стороной b и углом при основании β. все боковые грани образуют с основанием угол φ. найти площадь полной поверхности пирамиды.

👇
Ответ:
Svinhaa
Svinhaa
12.11.2022

При желании можно разбить треугольник ABC на два прямоугольных треугольника AKB и AKC. Но в результате формулы будут все равно тождественны. Действительно,

AK = AB sin ß = b sin β
BK = AB cos β = b cos β
SABK = AK * BK / 2 = b2sin β cos β / 2

откуда
SABС =   2SABK =   b2sin β cos β 
(примем за искомую площадь основания, далее справочно приведем к той же формуле, которая указана по ссылке выше)

Если воспользоваться основными тригонометрическими тождествами, то
b2sin β cos β = 1/2 b2sin 2β = 1/2 b2sin 2β  
или как по основной формуле (площади равнобедренного треугольника)
1/2 b2sin 2β = 1/2 b2sin (180 - α)  =  1/2 b2sin α

Теперь найдем площадь боковой поверхности пирамиды.
Сначала найдем высоту боковых граней, прилежащих к равным сторонам равнобедренного треугольника, лежащего в основании пирамиды. При этом учтем, что высота пирамиды проецируется в точку О основания, которая одновременно является центром вписанной окружности. Вместе с радиусом вписанной окружности, высота боковой грани образует прямоугольный треугольник. Откуда высота боковой грани пирамиды равна:
h = r / sin φ

Длину радиуса вписанной окружности найдем как
r = S/p

Учитывая, что BC = 2BK, то BC = 2b cos β
откуда
p = ( b + b + 2b cos β ) / 2
p = ( 2b + 2b cos β ) / 2
p = 2b ( 1 + cos β ) / 2
p = b ( 1 + cos β )

Таким образом, радиус вписанной окружности в основание пирамиды будет равен
r = S / p
r = b2sin β cos β / b ( 1 + cos β ) = b sin β cos β / ( 1 + cos β )

Теперь определим высоту боковых граней пирамиды. Зная, что
l / r = cos φ, то
l = r cos φ

Тогда площадь грани пирамиды, прилегающей к равным сторонам основания (а в основании пирамиды у нас лежит равнобедренный треугольник) будет равна:
S1 = lb / 2
S1 = r cos φ * b / 2
S1 = b sin β cos β / ( 1 + cos β ) cos φ * b / 2
S1 = b2 sin β cos β / ( 1 + cos β ) cos φ / 2
S1 = b2 sin β cos β  cos φ / ( 2 ( 1 + cos β ) )

Площадь боковой грани, прилегающей к основанию, равна:
S2 = BC * l / 2
S2 = 2b cos β *  r cos φ / 2
S2 = b cos β * r cos φ
S2 = b cos β * b sin β cos β / ( 1 + cos β ) * cos φ
S2 = b2 cos2 β sin β cos φ / ( 1 + cos β )

Площадь боковой поверхности пирамиды равна:
Sбок = 2S1 + S2
Sбок = 2 * b2 sin β cos β / ( 2 ( 1 + cos β ) cos φ ) + b2 cos2 β sin β cos φ / ( 1 + cos β )
Sбок = b2 sin β cos β cos φ / ( 1 + cos β ) + b2 cos2 β sin β cos φ / ( 1 + cos β )
Sбок = ( b2 sin β cos β cos φ + b2 cos2 β sin β cos φ ) / ( 1 + cos β )
Sбок = b2 sin β cos β cos φ ( 1  + cos β ) / ( 1 + cos β )
Sбок = b2 sin β cos β cos φ

Откуда площадь полной поверхности пирамиды с равнобедренным треугольником в основании составит:
S = Sбок + Sосн
S = b2 sin β cos β cos φ + b2 cos2 β sin β cos φ / ( 1 + cos β )

4,5(90 оценок)
Открыть все ответы
Ответ:
Homka2284
Homka2284
12.11.2022

2.

Так как в равнобедренном треугольнике боковые стороны равны, а биссектриса делит сторону пополам, то АВ = ВС, АВ/2 = ВС/2, ДА= АВ/2 и ЕС= ВС/2 и следовательно ДА=ЕС.

В треугольнике АДС и СЕА
ДА=ЕС
АС - общая
угол С = углу А т.к треугольник АВС равнобедренный
Следовательно треугольники равны по двум сторонам и углу между ними.

1.

Рассмотрим треугольники АКД и КДС: АД=ДС, КД - общая, угол Д прямой, т.к. ВД - медиана. отсюда следует что треугольники АКД = КДС, следовательно и все стороны равны, в том числе и стороны АК = КС (треугольник равнобедренный)

4,6(28 оценок)
Ответ:
Sabaydin
Sabaydin
12.11.2022
Через две точки можно провести прямую, если эти точки лежат в одной плоскости.
Здесь А и Д лежат в одной плоскости, поэтому через них можно провести прямую. Соединим их. 
А и М тоже лежат в одной плоскости, соединим их.
Плоскость (BCC₁) параллельна плоскости (ADD₁),поэтому через М проводим прямую параллельно DD1.
Она пересеклась с СС1. Обозначим точку их пересечения К.
Точки К и D₁ лежат в одной плоскости, ⇒ через них можно провести прямую, лежащую в этой плоскости. 
Получено нужное сечение АМКD₁.
Для того, чтобы вычислить периметр сечения, нужно найти длину  всех стороны четырехугольника АМКD₁
АD₁ - диагональ квадрата со стороной 4
АD₁=4√2
МК параллельна ВС₁=AD₁ и является средней линией треугольника ВСС₁.
Она равна половине ВС₁
МК=2√2
⊿АВМ=⊿КС₁D₁ по двум сторонам и углу между ними.
АМ=КD₁
Из треугольника  АВМ, где  АВ=4, ВА=2
АМ=√(АВ²+ВМ²)=√(16+4)=2√5
Периметр АМКD₁
Р=2*2√5+4√2+2√2Р=6√2+4√5 (единиц длины)
----------
[email protected]

Abcda1b1c1d1 -куб, ребро которого 4 см. постройте сечение куба плоскостью, проходящей через точки a,
4,4(61 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ