1. S= 1\2*(высота*основание). 1\2*(6*12)=72\2=56см в кубе.
2.Гипотенуза по теореме Пифагора=10, S=1\2*(катет*катет2)=48\2=24см в кубе.
3.Найдем катет по теореме Пифагора одного из треугольников (BCO). =5. P=5(катет)*4(кол-во сторон)=20см. S= сначала одного треугольника. 1\2*(4*3)(по половине диагоналей)=12:2=6см в кубе. 6*4(количество треугольников в ромбе)=24см в кубе.
4.Так как острый угол трапеции - 45 град, треугольник СНК - равнобедренный. По теореме Пифагора найдем катеты
2х²=(3√2)²
2х²=18
х²=9
х=3
Тогда основания трапеции: ВС=3 АК=2*3=6 Высота СН=3
Можем вычислить площадь трапеции
S=(3+6)*3/2
S=13.5см в кубе.
ух, есть!
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0