1рассмотрим треугольник aoc и треугольник bod: угол aoc = bod (как вертикальные) ao=ob и co=od (по условию,т.к. точка является o - посередине) значит, треугольник aoc = равен треугольнику bod (по двум сторонам и углу между ними) значит угол dao = равен углу cbo(в равных треугольниках против равных сторон лежат равные углы) 2 рассмотрим треугольник abd и треугольник adc: по условию, угол bda = углу adc сторона ad - общая и по условию угол bad = углу dac (т.к. ad - биссектриса) значит, треугольник abd = треугольнику adc(по двум углам и стороне между ними) значит сторона ab=ac(т.к. в равных треугольниках против равных углов лежат равны стороны)
"Боковые рёбра пирамиды равно наклонены к плоскости основания"
Отсюда следует что точка D находится над центром описанной окружности основания.
У прямоугольного треугольника центр описанной окружности посредине гипотенузы. АВ
Найдем АВ = ВС / sin (A) = 10 / 0.5 = 20
AC = √ (20^2- 10^2) = 10 √3
Пусть С - начало координат
Ось X - CB
Ось Y - CA
Ось Z - перпендикулярно АВС в сторону D
Координаты точек
А ( 0; 10√3; 0 ) он же вектор СА
В ( 10; 0;0)
D ( 5 ; 5√3; 5)
Вектор DB (5;-5√3;-5)
Косинус Искомого угла
| СА * DB | / | CA | / | DB | =
150 / 10√3:/ √( 25+75+ 25) = 3/ √15 = √(3/5)