Cм рисунок в приложении. Проведем высоты вы трапеции из вершин верхнего основания. Обозначим нижнее основание и боковые стороны х
Из прямоугольных треугольников находим катет
Катет равен гипотенузе х, умноженной на косинус 65°
(если бы 60°, то косинус 60° равен 0,5)
Тогда нижнее основание состоит их трех отрезков:
х·cos 65°+x+x·cos 65°=16 ⇒ x=16:(2cos 65°+`1)
cos 65°≈ 0,423
0,423х+х+0,423х=16
1,846 х=16
х≈8,67
Р≈8,67+8.67+8.67+16=42,01
Если все-таки 60° угол, то все гораздо проще:
0,5х+х+0,5х=16
2х=16
х=8
Р=8+8+8+16=40
Объяснение:
Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра:
r=S:р , где S - площадь треугольника, а p=(a+b+c):2 - полупериметр треугольника.
Площадь треугольника найдем по формуле Герона.
S=p (p−a) (p−b) (p−c) , где р - полупериметр треугольника.
S△=216 см²
r=216:36=6 см
S круга=πr² =36 π см