По теореме в равностороннем треугольнике медиана является биссектрисой и высотой, тогда BE перпендикулярно AC и следовательно угол AEB = CEB = 90.Треугольник ABE = EBC по первому признаку так как AEB = CEB = 90, BE медиана соответственно AE = CE и BE - общая , следовательно треугольники равны.
Треугольник АВС. АВ и ВС боковые стороны (они равны). АС основание. Из вершины А проводишь биссектрису, до пересечения со стороной ВС. Биссектриса делит угол пополам. Если угол между биссектрисой и основанием АС - 34°, то угол при основании = 34*2 = 68° Углы при основании равнобедренного треугольника равны, второй угол при основании тоже равна 68°. Сумма углов треугольника равна 180°, значит угол при вершине В равен 180 - (68 + 68) = 44° . Медиана в равнобедренном треугольнике, опущенная к основанию, является и биссектрисой. Поэтому угол между медианой, проведенной к основанию, и боковой стороной будет равен 44:2 = 22°
Для построения общего перпендикуляра скрещивающихся прямых АВ и В1D проведем плоскость через DB1 параллельно АВ. Это будет плоскость DСВ1А1, т.к. АВ||А1В1. Теперь проектируем прямую АВ на эту плоскость. АК⊥А1D, ВМ⊥В1С. Проекция получается КМ. ИЗ точки О1, где пересеклись КМ и В1D, проводим О1О параллельно АК. О1О= и будет общим перпендикуляром для скрещивающихся прямых. О1О=АК. СС1=√((DC1)²-DC²)=√209. B1C=√(B1D²-DC²)=√(289=17 B1C1=√(B1C²-C1C²)=√80 Из ΔААD найдем АК=АА1*АD/A1D=√209*√80/17=4√1045/17.
По теореме в равностороннем треугольнике медиана является биссектрисой и высотой, тогда BE перпендикулярно AC и следовательно угол AEB = CEB = 90.Треугольник ABE = EBC по первому признаку так как AEB = CEB = 90, BE медиана соответственно AE = CE и BE - общая , следовательно треугольники равны.