В координатной системе находится равнобедренный треугольник (=). Проведены медианы и к боковым сторонам треугольника. Длина стороны = 18, а высоты = 10. Определи координаты вершин треугольника, координаты точек и и длину медиан и (oтвет округли до сотых).
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
находим площади треугольников по формуле герона:
S=rad(p(p-a)(p-b)(p-c))
rad-корень
p-полупериметр
a,b,c-стороны треугольника
1)Находим полупериметр:
(формула: p=(a+b+c)/2)
полупериметр первого треугольника:
p=(5+8+12)/2
p=12,5cm
полупериметр второго треугольника:
p=(15+24+36)/2
p=37,5cm
2)Находим площадь:
площадь первого треугольника:
S1=rad(12,5(12,5-5)(12,5-8)(12,5-12))
S1=rad(12,5×7,5×4,5×0,5)
S1=(15rad15)4
площадь второго треугольника:
S2=rad(37,5(37,5-15)(37,5-24)(37,5-36))
S2=rad(37,5×22,5×13,5×0,5)
S2=(135rad5)/4
3)Находим отношение площадей:
S1/S2=((15rad15)/4)/((135rad5)/4)
S1/S2=(rad3)/9