М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Кет1235
Кет1235
07.04.2020 01:02 •  Геометрия

AO=OB ТАК КАК ТОЧКА O СЕРЕДИНА ОТРЕЗКА

👇
Открыть все ответы
Ответ:
nyk156
nyk156
07.04.2020
В рассуждениях нужно использовать признаки делимости...
кратное 18 ---> оно делится на 2 и на 9
т.е. оно четное --- заканчивается на 0 или 2 или 4 или 6 или 8
и сумма цифр числа делится на 9 (это признак делимости на 9)))
получим варианты:
a b с d 0
a b с d 2
a b с d 4
a b с d 6
a b с d 8
и теперь второе условие: соседние цифры отличаются на 2
для первого варианта: a b с 2 0,     a b 0 2 0 или a b 4 2 0
a+b+2 = 9 или a+b+4+2 = 9
a+b = 7              a+b = 3 ---> 12420, например
18 * 690 = 12420
но, первые цифры не на 2 отличаются... не получилось...
но смысл рассуждений такой же)))
пробуем еще...
у меня получилось:
24246 / 18 = 1347
можно попробовать и еще найти...
4,6(94 оценок)
Ответ:
ответ:

Всё в разделе "Объяснение".

Объяснение:

1. Неверно.

Два треугольника называются подобными , если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

2. Верно.

Это 2 признак подобия треугольников.

3. Верно.

Даны два квадрата. Назовём их ABCD и A_1B_1C_1D_1.

Проведём диагональ AC в квадрате ABCD и диагональ A_1C_1 в квадрате A_1B_1C_1D_1.

Рассмотрим \triangle ABC, \triangle ACD, \triangle A_1B_1C_1, \triangle A_1C_1D_1.

У квадрата все углы прямые.

\angle B = \angle B_1 = \angle D = \angle D_1 = 90^{\circ}, по свойству квадрата.

\angle ACD = \angle ACB = \angle A_1C_1D_1 = \angle A_1C_1B_1, так как диагонали квадрата делят углы пополам.

\Rightarrow \triangle ABC\sim \triangle ACD \sim \triangle A_1B_1C_1 \sim \triangle A_1C_1D_1, по 1 признаку подобия треугольников.

\Rightarrow ABCD\sim A_1B_1C_1D_1.

4. Неверно.

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
15 . заранее . подобные треугольники установите, истинны или ложны следующие высказывания: 1. два тр
4,4(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ