Биссектриса bl угла в в треугольнике авс делит сторону ас в отношении 1: 2 (al: lc=1: 2). какой угол образует эта биссектриса с медианой, проведённой из вершины а?
В ромбе все стороны равны А также по условию диагональ равна стороне, значит треугольник, образованный сторонами и диагональю равносторонний, значит все углы по 60 Т.к диагонали ромба пересекаются под прямым углом, получаются 4 равных прямоугольных треугольника, а у одного из них один из углов 60, значит 2-ой угол прямоугольного треугольника = 30, а значит углы между диагоналями и сторонами ромба равны 30;30;60;60;30;30;60;60 (по часовой стрелке сверху) Диагональ ромба делит угол пополам - это свойство ромба, значит углы ромба равны 60;120;60;120 Проверка: 120+120+60+60=360 А сумма углов четырёхугольника = 360, значит решение верно!
В ромбе все стороны равны А также по условию диагональ равна стороне, значит треугольник, образованный сторонами и диагональю равносторонний, значит все углы по 60 Т.к диагонали ромба пересекаются под прямым углом, получаются 4 равных прямоугольных треугольника, а у одного из них один из углов 60, значит 2-ой угол прямоугольного треугольника = 30, а значит углы между диагоналями и сторонами ромба равны 30;30;60;60;30;30;60;60 (по часовой стрелке сверху) Диагональ ромба делит угол пополам - это свойство ромба, значит углы ромба равны 60;120;60;120 Проверка: 120+120+60+60=360 А сумма углов четырёхугольника = 360, значит решение верно!
посомтри в учебнике там должен быть пример, с почти такой же задачей.