Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
Вписанный угол, который опирается на диаметр, равен 90 градусов. Углы К и F следовательно равны 90 градусов. Треугольники MKN и MFN - прямоугольные. Они равны по общей гипотенузе и катету KN = FN. А в равных треугольниках против равных сторон лежат равные углы. Против стороны FN лежит угол FMN, а против стороны KN лежит угол KMN. Стороны равны, значит равны и углы. Но, если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то и третьи углы у них равны. Значит, угол MNF равен углу MNK.
AB = CD = 6
BC = AD = 12
Объяснение:
Поскольку это паралелограм противоположные стороны равны.
AB : BC = 1 : 2
Обозначим AB = CD = x; BC = AD = 2x
Имеем уравнение:
x + x + 2x + 2x = 36
6x = 36
x = 6
AB = CD = 6см
BC = AD = 2AB = 6 * 2 = 12см