М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
igordyatenko
igordyatenko
23.05.2023 01:04 •  Геометрия

Какой треугольник называют остроугольным ? а какой тупоугольным?

👇
Ответ:
ironfist2
ironfist2
23.05.2023
Как известно, в треугольнике три угла. 
Если все углы треугольника меньше 90°, т.е. острые, треугольник - остроугольный. 
. Если в треугольнике есть прямой угол, то этот треугольник прямоугольный. 
Если в треугольнике есть тупой угол ( больше 90°), он называется тупоугольным. 
Получается, что вид треугольника можно определить по величине его наибольшего угла. 
Сумма углов треугольника 180°, поэтому в нём может быть только один прямой угол и только один тупой угол. 
4,7(97 оценок)
Открыть все ответы
Ответ:
ramazan2001xxx
ramazan2001xxx
23.05.2023

Через  вершину конуса с основанием радиуса R проведена плоскость, которая пересекает его основание по хорде, которую видно из центра основания под углом α, а из вершины – под углом β. Найти площадь сечения. 

--------

Данное сечение конуса - равнобедренный треугольник. Пусть сторона этого треугольника равна а. 

Тогда его площадь можно выразить S=a²•sinβ/2.

1) Примем длину хорды равной х. Тогда  из треугольника в основании, образованного хордой и двумя радиусами, квадрат её длины можно выразить по т.косинусов. 

х²=2R²-2R²•cosα=2R²(1-cosα)

2) Выразим квадрат длины хорды по т.косинусов из треугольника в сечении:

х²=2а²-2а²•cosβ=2а²(1-cosβ)

3) Приравняем найденные значения х² 

2R²(1-cosα)=2а²(1•cosβ)

Выразим а² из этого уравнения:

а²=R²(1-cosα):(1-cosβ)

Отсюда

S сечения=[R²(1-cosα):(1-cosβ)]•sinβ:2


Через вершину конуса з основою радіуса r проведено площину, що перетинає його основу по хорді, яку в
4,8(57 оценок)
Ответ:
JetBalance97
JetBalance97
23.05.2023
Пусть в тр-ках авс и а (1)в (1)с (1)  1) равны медианы вк и в (1)к (1) ,  2) угол авк =углу а (1)в (1)к (1)  3) угол свк = углу с (1)в (1)к (1)  доказать, что тр-к авс = тр-ку а (1)в (1)с (1)  доказательство  в тр-ке авс продолжим медиану вк и отложим км =вк и точку м соединим с точками а и с аналогичные построения сделаем в тр-ке а (1)в (1)с (1), тогда вм =в (1)м (1)  1) тр-к акв =тр-ку скм ( по двум сторонам вк=км и ак=кс и углу между ними -они вертикальные)  2) аналогично тр-к а (1)к (1)в (1) =тр-ку с (1)к (1)м (1)  отсюда следует  3) ав=мс =а (1)в (1) =м (1)с (1), < авм = < вмс =< а (1)в (1)м (1) = < в (1)м (1)с (1)  4) тогда тр-к всм = тр-ку в (1)с (1)м (1) по стороне вм =в (1)м (1) и двум прилежащим углам  5) отсюда вс =в (1)с (1) и ав=мс =а (1)в (1) =м (1)с (1),  6) проэтому тр-к авс = тр-ку а (1)в (1)с (1) по двум сторонам и углу между ними  второй способ состоит в том, что по теореме " площадь тр-ка равна половине произведения двух сторон на синус угла между ними выражают стороны ав и вс через медиану вк и углы авк и свк применяя соотношение s (авс) = s (авк) + s (свк) и доказывают, что ав= а (1)в (1) и вс= в (1)с (1)
4,6(32 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ