ответ: 5
Объяснение:
Классная задачка! Требует минимум знаний геометрии.
Попробую рассказать что я делал. Тут везде середины отрезков и ничего конкретного более не сказать. Медиана делит треугольник на равные по площади треугольники. Значит надо это использовать.
Я разделил диагональю МН закрашенное на две части. Значит и площадь разделена на две части. Единственное, что мы знаем об этих площадях - их сумма равна 1. Мне лень обозначать площади S₁ и S₂, поэтому площадь первой части я обозначил а, а второй с. Если сложить а+с = 1. Я построил треугольник ВМН. Медиана МК делит его на два равновеликих треугольника с равной площадью. Если площадь одного а, то и другого а. Из треугольника АВК видно, что и АМВ имеет площадь а.Значит треугольники АВК и СЕД в сумме имеют площадь 2
Потом построил треугольник МСВ и аналогичными суждениями получил, что площадь АМД+площадь СЕД = 2
Тогда площадь всего четырехугольника = 5
Равнобедренный △ АВС
∠А = ∠С = 40° (углы при основании)
Найти:∠В = ?°.
Решение:Сумма углов треугольника равна 180°.
=> ∠В = 180° - (40° + 40°) = 100°
ответ: 100°Задача#2.Дано:△АВС
∠А < в 4 раза ∠В
∠С < на 90° ∠В
Найти:а) ∠А, ∠В, ∠С
б) сравнить АВ и ВС.
Решение:а) Пусть х - ∠А, 4х - ∠В, 4х - 90 - ∠С
Сумма углов треугольника равна 180°.
х + 4х + (4х - 90) = 180
9х = 90
х = 30
30° - ∠А
30° * 4 = 120° - ∠В
120° - 90° = 30° - ∠С
б) Так как ∠А = ∠С = 30° => △АВС - равнобедренный.
=> АВ = ВС, по свойству равнобедренного треугольника.
ответ: а) 30°, 30°, 120°. б) АВ = ВС.Задача#3.Дано:△АВС
∠АВЕ = 104°
∠DCF = 76˚
AC = 12 см
Найти:АВ = ? см.
Решение:Сумма смежных углов равна 180°.
∠АВЕ смежный с ∠АВС => ∠АВС = 180° - 76° = 104°
Вертикальные углы равны.
∠DCF = ∠ACB = 104˚
Так как ∠АСВ = ∠АВС = 104° => △АВС - равнобедренный.
=> АВ = АС = 12 см, по свойству равнобедренного треугольника.
ответ: 12 см.
Объяснение:
Площадь параллелограмма равна произведению стороны параллелограмма на высоту, проведённую к этой стороне.
Дано : AD = 8 см, BK = 5 см, BK⊥AD
Найти : S ABCD
S ABCD= AD * BK = 8 * 5 = 40 см²