Пусть трапеции ABCD, где прямой угол - А.. Проведём высоту из т. С. Назовём её СО. Бис-са выходит из угла D. Тогда
1)угол DBC=BDA, Тк являбтся накрест лежащимт при прямых BC И AD И секущей BD. Тогда получается, что треуг BD равнобедренный.
2) в ранобедренном трег боковые стороны равны. BC=CD=15см.
3) рассмотрим прямоуг. ABCO. В прямоуг противолежсщие стороны равны. AB=CO=12, BC=AO=20.
4) рассмотрим треуг COD. По теореме Пифагора ОD^2= 225-144=81. Значит OD=9см.
5) AD=20+9=29см.
6) SABCD=(20+29)/2*12=39/2*12=39*6=234 СМ ^2
Дана равнобедренная трапеция АВСД. АД - большее основание, ВС - меньшее основание. Из вершины В проведена высота ВК. Средняя линия трапеции ЕР. Высота ВК пересекает ЕР в точке О и делин на отрезки ЕО=2см и ОР=6см.
Проведем вторую высоту из вершины С. (высота СМ) СМ пересекает ЕР в точке Н.
Т.к. трапеция равнобедренная, то ОН=ВС, НР=ЕО=2см. ОН=6-2=4см. Следовательно основание ВС=4см.
Средняя линия трапеции равна полусумме оснований. Пусть АД=х, тогда ЕР=(4+х):2=8
4+х=20
х=12см
ответ: меньшее основание=4см, большее основание=12см.
параллелепипед
Объяснение:
параллелепипед