М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Усі художні засоби у повісті за сестрою ​

👇
Открыть все ответы
Ответ:
тигрц28
тигрц28
30.04.2023

Если точка C(x0, y0) делит отрезок с концами в точках A(x1, y1) и B(x2, y2) в отношении 2 : 3, считая от точки A, то по теореме о пропорциональных отрезках проекция точки C на ось OX делит проекцию отрезка AB на эту ось в том же отношении, то есть = ⅔. Отсюда находим, что

x0 = ⅕ (3x1 + 2x2) = (3·(–6) + 2·4) : 5 = –2.

Аналогично y0 = ⅕ (3y1 + 2y2) = (3·1 + 2·6) : 5 = 3.

ответ

(–2, 3).

Источники и прецеденты использования

web-сайт

Название Система задач по геометрии Р.К.Гордина

URL http://zadachi.mccme.ru

задача

Номер 4235

4,5(98 оценок)
Ответ:
Volovoy00T
Volovoy00T
30.04.2023

ответ:S=12P⋅h,S=12⋅9⋅7√2=97√4

Объяснение:

найдем сторону основания правильной пирамиды по формуле a = R√3, a = √ · √ = 3

найдем периметр основания Р = 3·а, Р = 9

радиус вписанной в правильный треугольник окружности в 2 раза меньше радиуса описанной около этого треугольника окружности, т.е. R = 2r, тогда OP=3√2

из прямоугольного треугольника МОР по теореме Пифагора находим апофему МР: MP=MO2+OP2−−−−−−−−−−√,

МР=1+|3√2|2−−−−−−−−√=1+34−−−−−√=7√2

вычислим площадь боковой поверхности правильной пирамиды: S=12P⋅h,S=12⋅9⋅7√2=97√4

4,4(92 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ