В пространстве существуют точки, что принадлежат данной плоскости и точки, что ей не принадлежат.(аксиома) Пусть точка А - точка, которая не принадлежит плоскости альфа (а значит не принадлежит и пряммой а) Через пряммую а и точку, что не лежит на пряммой можно провести плоскость. Проводим такую плоскость Бэта. Пряммая а принадлежит обоим плоскостям Альфа и Бэта, но эти плоскости разные , так как точка А плоскости Бэта не принадлежит плоскости Альфа. Таким образом мы доказали требуемое утверждение
Допускаю, что решение не относится к конструктивной геометрии. К простой - относится. Возможно, оно Вам Понадобятся : циркуль, линейка, угольник с прямым углом для построения параллельных прямых, транспортир, карандаш. 1). Чертим окружность данного радиуса. 2).Под ней чертим произвольную прямую с точкой касания с окружностью в точке Н. 3). От Н вправо откладываем НК, приближенно равную по длине данной стороне. 4). От К как от вершины строим данный угол с транспортира ( или по методике построения угла) 5). Из центра О проводим к этой стороне угла перпендикуляр ОТ по стандартному методу. 6). Через точку пересечения ОТ и окружности проводим параллельно КТ касательную к окружности. Точку ее пересечения с прямой НК обозначим А. Это вершина угла заданной величины. 7). От А откладываем длину данной стороны. Ставим точку В. ВН по свойству касательной из одной точки равен длине отрезка от В до точки касания окружности с третьей стороной. 8). Раствором циркуля, равным ВН, проводим из В, как из центра, полуокружность до пересечения с окружностью в точке Е. 9). Из В через т.Е проводим касательную до пересечения с прямой, проведенной из вершины А, т.е. со второй стороной угла А. Точка пересечения С будет третьей вершиной треугольника. Треугольник АВС построен.
вот єто правильно!
3:4:5=360° (Сумма внешних углов треугольника равна 360°)
3х+4х+5х=360°
12х=360°
х=360/12
х=30
Внешние углы:
1. 3х=3*30=90°
2. 4х=4*30=120°
3. 5*30=150°
Следовательно, острые углы равны:
1. 180-90=90° (Не забываем, что треугольник прямоугольный)
2. 180-120=60°
3. 180-150=30°