треугольник DBC-равнобедренний,так как угол С=35 градусов и угол DBC 35 градусов.
Из этого следует,что в этом труегольнике больший угол BDC,значит, сторона ВС в этом треугольнике самая большая(напротив большего угла лежит большая сторона)
В треугольнике АВD большая сторона BD(так как угол А=75 градусов-самый большой)
А BD=DC(так как треугольник DBC-равнобедренний) и эти стороны меньше ВС.
Из всего этого следует,что AD<BC,так как большая сторона(BD) треугольника ABD меньше большой стороны(BC) треугольника DBC.
Значит и меньшая сторона(AD) треуг. ABD будет меньше большей стороны(BD) треугольника ABD.
Построение треугольника: 1) Проведём прямую a. 2) Построим перпендикулярную к ней прямую b: -Проведём окружность произвольного радиуса с центром в произвольной точке (в нашем случае ,в точке О) так,что она пересечёт прямую a в точках M и N; -Проведём две окружности радиуса MN с центрами в точках M и N так,что они пересекутся в двух точках F и S; -Проведём прямую b через точки F и S; точки F,O,S лежат на одной прямой b; -a⊥b. 3)Проведём окружность произвольного радиуса с центром в точке О так,что она пересечёт прямые a и b в двух точках каждую;нам нужны лишь две : A и B (A∈a,B∈b) 4)Соединим точки A и B. 5) AOB -- прямоугольный равнобедренный треугольник.
Прямой угол можно построить и с циркуля!
Поворот вокруг вершины B на 90 градусов: 1) Транспортиром откладываваем два прямых угла: один от точки B для от прямой a,другой от этой же точки,но для прямой AB -- прямые a и c образуют угол в 90°,AB и d так же. 2) Раствором циркуля берём расстояние BO и переносим его на прямую c,откладывая от точки B;отмечаем точку O'. Затем берём расстояние AB и откладываем на прямой d от точки B его же,отметив точку A'. AB=A'B,OB=O'B. Соединим точки: B с O',O' с A',A' с B 3) A'O'B -- образ треугольника AOB при повороте на 90 градусов по часовой стрелке вокруг точки B.
1) Опустим из А высоту АН. АН=АВ*sin 60º=2√3BH=AB*sin30º=2 HC=BC-BH=6-2=4 По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7 Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH 6:2√7=BD:2√3 BD=12√3:2√7=(6√3):√7 или (6√21):7
2) Найдем АС как в первом решении. Площадь треугольника АВС S=AC*BD:2 S=AH*BC:2 Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения: AC*BD:2=AH*BC:2 (2√7)*BD:2=(2√3)*6:2 BD=(12√3):(2√7)=(6√3):√7 или (6√21):7 -- АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2
треугольник DBC-равнобедренний,так как угол С=35 градусов и угол DBC 35 градусов.
Из этого следует,что в этом труегольнике больший угол BDC,значит, сторона ВС в этом треугольнике самая большая(напротив большего угла лежит большая сторона)
В треугольнике АВD большая сторона BD(так как угол А=75 градусов-самый большой)
А BD=DC(так как треугольник DBC-равнобедренний) и эти стороны меньше ВС.
Из всего этого следует,что AD<BC,так как большая сторона(BD) треугольника ABD меньше большой стороны(BC) треугольника DBC.
Значит и меньшая сторона(AD) треуг. ABD будет меньше большей стороны(BD) треугольника ABD.
AD<BC