М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nastya8laif
Nastya8laif
24.05.2021 08:00 •  Геометрия

доказательство к теореме Если сторона и два принадлежащий прилежащих к ней угла одного треугольника соответственно равны сторонам и двум прилежащим к ней углам другого треугольника то такие треугольники равны​

👇
Ответ:
kawmod
kawmod
24.05.2021

Два треугольника, которые можно совместить наложением, называются равными.

Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.

Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.

Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.

Доказательство:

Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.

\boxtimes

Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.

Теорема 3 (третий признак равенства треугольников — по трем сторонам)

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Запишите сокращенно условие и заключение теоремы.

Доказательство:

Для доказательства приложим треугольники большими сторонами. Треугольник A_1B_1C_1 займет положение AB_2C. Треугольник BAB_2 и треугольник BCB_2 — равнобедренные. Из равенства углов при основании получаем, что B=B_2. Используем первый признак рав

Объяснение:

4,7(18 оценок)
Открыть все ответы
Ответ:
Vikakotik5
Vikakotik5
24.05.2021
1. V=S*h
2. Так как в основании ромб - то его можно диагоналями разделить на 4 треугольника (одинаковых), в котором гипотенуза - 5см (сторона ромба), катет - 4см (половина диагонали), ну и по теореме Пифагора нетрудно вычислить второй катет - 3см. Да и есть египетский треугольник - 3\4\5
3. Площадь 1 треугольника равна 1\2*3*4=6см.
4. Рассмотрим прямоугольник (грань призмы). В котором диагональ - 13см, нижняя сторона - 5см (сторона ромба), то по теореме Пифагора вычисляем высоту призмы (высота=sqrt(13*13-5*5)=12см).
5. Площадь основания равна сумме площадей 4х треугольников. 6*4=24
6. V=S*h=12*24=288см
4,6(93 оценок)
Ответ:
daryaromanovsk
daryaromanovsk
24.05.2021

Треугольник АВС, АВ=ВС, АС=корень24, уголА=уголС=30, уголВ=180-30-30=120, МН - линия, площадьАМНС=площадьМВН=1/2площадьАВС, АС/sinВ =ВС/sinА, корень24/sin120=ВС/sin30, корень24/(корень3/2) / ВС/(1/2), ВС=корень8=2*корень2=АВ, площадьАВС=1/2*АВ*ВС*sin120=1/2*(2*корень2)*(2*корень2)*корень3/2=2*корень3, площадьМВН=2*корень3/2=корень3, треугольникиАВС и МВН подобны по двум углам уголВ общий , уголА=уголВМН как соответственные, в подобных треугольниках площади относятся как квадраты подобных сторон, площадь АВС/площадьМВН=ВС в квадрате/ВН в квадрате, 2*корень3/корень3=8/ВН в квадрате , ВН=корень8/2=2


4,4(68 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ