1)т.к Δ АВС - прямоугольный 1) можно найти АВ по т. Пифагора:
АВ - гипотенуза АВ²=9+16=25
АС=3 см ⇒ АВ=5 см
СВ=4 см
угол С- прямой =90⁰
найти: АН-?
НВ-?
Высота СН -?
2)из св-ва прямоугольного треугольника( высота, опущенная из вершины прямого угла на гипотенузу, делит его на 2-а подобных Δ-ка, каждый из которых подобен данному тр-ку) т.е ΔАСН подобен ΔСВН СВ²=АВ*НВ (1)
ΔАСН подобен ΔАВС ⇒ АС²=АВ*АН (2) ⇒
ΔСВН подобен ΔАВС СН²=АН*ВН (3)
⇒ теперь подставляем (СВ=4, АВ=5) в (1)получаем 16=5*НВ
НВ=16/5=3,2
теперь подставляем во (2) (АС=3, АВ=5) получаем 9=5*АН
АН=9/5=1,8
и в (3) подставляем то что нашли и получаем: СН²= 1,8*3,2
СН=√5,76=2,4
ответ:АН=1,8 см; НВ=3,2 см; СН=2,4 см
Найдем сторону квадрата:
BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4
ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB:
SB²=SD²-BD²
SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3.
Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3
tg∠SCB=√3, ∠SCB=60 градусов