Найдем S(AOB):
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
Объяснение:
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.
Даны вершины треугольника: А(-4;1), В(4;2), С(-2;-2).
Задачу можно решить двумя
1 - геометрическим по теореме косинусов, найдя длины сторон,
2 - векторным.
Вектор АВ = (4-(-4); 2-1) = (8; 1). Модуль (длина) равен √(64 + 1) = √65.
Вектор АС = (-2-(-4); -2-1) = (2; -3). Модуль равен √(4 + 9) = √13.
cos A = (8*2 + 1*(-3))/(√65*√13) = 13/(13√5) = 1/√5 = √5/5.
Вектор BA = -AB = (-8; -1). Модуль (длина) равен √(64 + 1) = √65.
Вектор BC = (-2-4); -2-2) = (-6; -4). Модуль равен √(36 + 16) = √52.
cos B = (-8*-6 + -1*(-4))/(√65*√52) = 52/(26√5) = 2/√5 = 2√5/5.
Вектор CА = -AC = (-2; 3). Модуль (длина) равен √(4 + 9) = √13.
Вектор CB = -BC = (6; 4). Модуль равен √(36 + 16) = √52.
cos C = (-2*6 + 3*4)/(√13*√52) = 0/(2*13) = 0.
Угол С прямой. Это также видно по сумме квадратов сторон: 13+52 = 65.