Дан отрезок АВ. Отрезок надо разделить в отношении 5 : 4, т.е. всего 9 равных частей. Начертим луч с началом в точке А под произвольным углом к отрезку. На луче отложим последовательно 9 равных отрезков (длина одного отрезка произвольная). Последняя из отмеченных точек - С. Соединим точку С с другим концом данного отрезка - В. Через концы отложенных равных отрезков проведем прямые, параллельные прямой ВС. По теореме Фалеса эти прямые отсекут на отрезке АВ 9 равных отрезков. Отсчитаем 5 из них и отметим точку К. АК : КВ = 5 : 4.
1) подобный 2) подобны 3) 48 Пусть например дан параллелограмм ABCD для удобства. Сумма двух углов параллелограмма равна 60 градусам, значит это углы противоположные (потому-что иначе сумма углов прилежащие к одной стороне равны 180 градусов). Пусть угол А плюс угол С равны 60 градусов, тогда каждый из них равен по 30 градусов. Можно найти площадь треугольника ABD, как площадь треугольника равная половине произведения синуса угла (в нашем случае 30 градусов) и длин заключающих его сторон ( в нашем случае 12 и 8) А площадь параллелограмма равна сумме двух таких треугольников (по свойству деления диагонали ромба на два равновеликих (равные по площади) треугольника)
15 см
Объяснение:
Обозначим длину гипотенузы за х см, тогда длина неизвестного катета равна ( х - 6) см.
По теореме Пифагора с^2 = а^2 + b^2
x^2 = 12^2 + (x - 6)^2
x^2 = 144 + x^2 - 12x + 36
12x = 180
x = 180:12
x = 15
15 см - длина гипотенузы