__________№1____________
Если один из углов ромба равен 60°, второй равен 120° ( из суммы внутренних углов между параллельными прямыми и секущей). Поэтому его меньшая диагональ делит его на два равносторонних треугольника и равна стороне ромба.
а) CВ║АВ, лежащей в плоскости α и, следовательно, параллельна этой плоскости (свойство). Расстояние от точки до плоскости равно длине перпендикуляра между ними. Все точки прямой, параллельной какой-либо плоскости, равноудалены от неё. ⇒ Расстояние от точки С до плоскости α равно расстоянию от точки D до неё, т.е. а/2.
б). Линейный угол двугранного угла определяется лучами, проведенными в гранях угла из одной точки ребра перпендикулярно ему.. На рисунке DF – высота ∆ АDВ. DF⊥АВ, DM перпендикулярна α, МF – проекция DF на плоскость α. По т.о 3-х перпендикулярах МF⊥АВ. Угол МFD – искомый.
в) DF⊥АВ, DF=a•sinDAF=a√3/2. Из ∆ DMF sinDFM=a/2:a√3/2.=1/√3
Гипотенуза вписанного прямоугольного треугольника равна 2R, в нашем случае 10.
Второй катет вычисляем по теореме пифагора:
b^2 = c^2 - a^2
b^2 = 100 - 36 = 64
b = 8.