если провести прямую с точки F в точку D то будет прямоугольный треугольник, и того с этого треугольника найдем ДФ с теоремы пифагора, нам известна сторона АФ = 4 и АД = 4 и ДФ = корень из АФ в квадрате + АД вквадрате = корень из 32
потом проведем източки Ф в точку С и найдем по тойже схеме по теореме пифагора а нам известно что БФ = 8 а БЦ = 4 и того корень кв из 8 в квадрате + 4 в квадрате = корень из 80.
таким образом мы нашли длины прых из точки Ф в точки Ц иД ФЦ = корень из 80, ЦД = корень из 32
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
если провести прямую с точки F в точку D то будет прямоугольный треугольник, и того с этого треугольника найдем ДФ с теоремы пифагора, нам известна сторона АФ = 4 и АД = 4 и ДФ = корень из АФ в квадрате + АД вквадрате = корень из 32
потом проведем източки Ф в точку С и найдем по тойже схеме по теореме пифагора а нам известно что БФ = 8 а БЦ = 4 и того корень кв из 8 в квадрате + 4 в квадрате = корень из 80.
таким образом мы нашли длины прых из точки Ф в точки Ц иД ФЦ = корень из 80, ЦД = корень из 32