одна сторона квадрата h=b=24 - это высота призмы
смежная с ней сторона квадрата P=b=24 - это периметр основания
высота одна и та же h=b=24 - это высота призмы
в правильной треугольной призмы -
сторона основания a=P/3=b/3=24/3=8 см
площадь основания S∆= a^2√3/4=8^2√3/4=64√3/4=16√3 см2
объем призмы V∆=S∆*h=32√3h
в правильной четырехугольной призмы -
сторона основания c=P/4=b/4=24/4=6 см
площадь основания S□= c^2=6^2=36 см2
объем призмы V□=S□*h=36h
V∆ /V□ =16√3h /36h =4√3 / 9 =4√3 : 9
ОТВЕТ V∆ /V□ = 4√3 / 9 =4√3 : 9
Один из острых углов прямоугольного треугольника равен 60°:
1)катет, прилежащий к этому углу, 6,5 см. Вычислите гипотенузу;
Дано: треуг ABC
уголС=90град
уголВ=60град
СВ=6,5см
Найти:АВ
cosB=CB:AB
cos60=6.5:AB
1/2=6.5:AB
AB=6.5:0.5
AB=13см
ответ: АВ= 13см
Один из острых углов прямоугольного треугольника равен 60°:
2) сумма меньшего катета и гипотенузы 3,6 дм. найдите длину гипотенузы и меньшего катета.
Дано: треуг ABC
уголС=90град
уголА=60град
АВ -гипотенуза
x-меньший катет
АВ+х=3,6
Найти: АВ и х
найдем уголВ=90град - уголА=90град-60град=30град
т.к. напротив меньшего угла лежит меньшая сторона, то
АС - меньший катет (т.к. напроитв уголВ=30град)
Пусть АС=хдм, тогда гипотенуза (3,6-х) дм
cosA=AC:AB
cos60=x:(3.6-x)
0.5= x:(3.6-x)
x= (3.6-x)*0.5
x= 1.8-0.5x
1.5x=1.8
x=1.2 дм - меньший катет
cosA=AC:AB
0,5=1,2: AB
AB =1,2:0,5
AB=2,4дм - гипотенуза