Из центра окружности О проведём перпендикуляр ОК к хорде АВ. Длина перпендикуляра является расстоянием от центра окружности до хорды. Этот перпендикуляр разделит хорду пополам: АК = АВ = 3см.
Треугольник АОК - прямоугольный с гипотенузой ОА = R = 5см.
По теореме Пифагора
ОА² = ОК² + АК²
25 = ОК² + 9
ОК² = 25 -9 = 16
ОК = 4(см)
ответ: расстояние от центра окружности до хорды равно 4см.
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
Из центра окружности О проведём перпендикуляр ОК к хорде АВ. Длина перпендикуляра является расстоянием от центра окружности до хорды. Этот перпендикуляр разделит хорду пополам: АК = АВ = 3см.
Треугольник АОК - прямоугольный с гипотенузой ОА = R = 5см.
По теореме Пифагора
ОА² = ОК² + АК²
25 = ОК² + 9
ОК² = 25 -9 = 16
ОК = 4(см)
ответ: расстояние от центра окружности до хорды равно 4см.