Проведем высоту ВН к основанию АС. Т.к. треугольник равнобедренный, то тр-к АОН будет равен треугольнику СОН по 2 сторонам и углу между ними.
Угол ВНА= углу ВНС и равен 90 гр. Сторона АН=НС = 1/2 АС. Сторона ОН Общая. Треугольники равны. Значит стороны ОА и ОС равны. Следовательно треугольник АОС - равнобедренный
Введем дополнительные обозначения: Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD a) по условию АВ-диаметр окружности, значит АО=ОВ=R ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит ∠ВАD=∠OHA При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD. Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.
б) ∠ВАD=∠OHA=60° ∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R ∠ABC=∠BCD=180°-60°=120° Если окружность касается CD, то ∠OKC=90° и ОК=R Сумма всех углов в четырехугольнике равна 360° ∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30° Если ОQ -средняя линия трапеции, то OQ || AD, следовательно ∠BAD=∠BOQ=60° ∠KOQ=∠BOQ-∠ВОК=60°-30°=30° ΔOQK -прямоугольный с прямым углом OKQ OQ=HD- так как DQOH-параллелограмм средняя линия трапеции =(а+в)/2
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
Проведем высоту ВН к основанию АС. Т.к. треугольник равнобедренный, то тр-к АОН будет равен треугольнику СОН по 2 сторонам и углу между ними.
Угол ВНА= углу ВНС и равен 90 гр. Сторона АН=НС = 1/2 АС. Сторона ОН Общая. Треугольники равны. Значит стороны ОА и ОС равны. Следовательно треугольник АОС - равнобедренный
Объяснение: