Можно по т.Пифагора найти половину второй диагонали из одного из прямоугольных треугольников, на которые диагонали при пересечении делят ромб, и затем умножить на 2. Как правило, именно такой решения дается к подобной задаче. Есть другой решения этой задачи. Вспомним, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. Т.е. d²+D²=2•(a²+b²) Ромб - параллелограмм с равными сторонами. Тогда d²+D²=4•a²⇒ 12²+D²=4•100 ⇒ D²=400-144=256 D=√256=16 см
1. 1) 50: 2 = 25 (- полусумма сторон) 2) пусть х + 5 - большая сторона, тогда х - наименьшая. полусумма равна 25, имеем уравнение: х+х+5=25, отсюда х = 10. 3) итак, наименьшие стороны равны по 10 см, а наибольшие по 15 см.2.30 градусов, в ромбе все стороны равны, и если сторона равна диагонали, то образуется равносторонний треугольник у которого все внутренние углы равны 60 градусов, вторая диагональ есть биссектриса внутреннего угла - делит его пополам3. 0,5*ac=корень (ad в квадрате + (0,5*bd) в квадрате) ac = 2*корень (6 в квадрате + 2,5 в квадрате) = 2*6,5 = 13
Эм что ты только что написал