Перпендикулярно
1
Гипотенуза=104 см.
Пусть 1 катет равен 3х, тогда второй 2х.
По теореме Пифагора:
104²=(3х)² + (2х)²
10816=13х²
х²=10816/13
х² = 832
х=√832.
Представляем...
Катеты 3√832 и 2√832. Катет есть среднее пропорциональное между гипотенузой и своей проекцией на гипотенузу: а² = с*а'.
а' = a²/c = 9*832 / 104 = 72 см.
Второй отрезок равен 104-72 = 32 см.
2.
Т.к. у треугольников АСМ и СВМ общая высота из вершины С к основанию АМ и ВМ, то отношение этих оснований равно отношению Sacм и Scвм:
ВМ/АМ=Sсвм/Sасм=18/2=9-по св-ву бисс-сы
ВС/АС=ВМ/АМ=9
следовательно ВС=9АС
следовательно ВС=9√7
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
площадь befc равна разности площадей abcd и aefd:
8xy-27/4*xy=5/4*xy
s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27
параллельно