Дана правильная четырёхугольная призма ABCDA1B1C1D1. AB=2√2 см, AA1= 2√3 см. Найдите угол между плоскостями AB1C и ABC. Варианты ответа: 1) 30°, 2) 60°, 3) 45° 4) arcctg√ 2
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
дан прямоугольник.
A B
Taisnsturu_skaits1.png
M H
Добавим ещё один прямоугольник так, что сторона BH обоих прямоугольников совпадает.
A B B1
Taisnsturu_skaits2.png
M H H1
Сколько прямоугольников нарисовано?
3
.
Добавим ещё один прямоугольник.
A B B1 B2
Taisnsturu_skaits3.png
M H H1 H2
Сколько прямоугольников нарисовано сейчас?
6
.
Допустим, что к данному первому прямоугольнику добавлено ещё 9 прямоугольников.
Посчитай, сколько всего прямоугольников нарисовано в этом случае.
Число прямоугольников:10