Опускаем, значит, две высоты, которые и являются расстоянием до наших хорд. Это будут OH = 3 и OH1 = 4. Концы хорды = 10 обозначим за A и D, а другой - за B и C (Рисунок я здесь, к сожалению, сделать не смогу))
1) тр COB - равнобедренный по определению, так как CO=OB=R.
OH - высота, медиана.
тр AOD - аналогично - равнобедренный по определению, так как AO=OD=R
OH1 - Высота, медиана.
2) тр. COH - прямоугольный
По теореме Пифагора - CH^2 + OH^2 = OC^2
3^2 + 5^2 = OC^2
OC = R = кор из 34
3) Тр. H1OD - прямоугольный, OD^2 = OH1^2 + H1D^2
H1D^2 = OD^2 - OH1^2 = 34 - 4^2 = 18
H1D = 3 корня из двух
AD = 6 корней из двух
В итоге получаем, что вторая хорда равна шесть корней из двух, это и есть ответц) Только мне не очень понятно, зачем же дана перпендикулярность хорд. =)
Опускаем, значит, две высоты, которые и являются расстоянием до наших хорд. Это будут OH = 3 и OH1 = 4. Концы хорды = 10 обозначим за A и D, а другой - за B и C (Рисунок я здесь, к сожалению, сделать не смогу))
1) тр COB - равнобедренный по определению, так как CO=OB=R.
OH - высота, медиана.
тр AOD - аналогично - равнобедренный по определению, так как AO=OD=R
OH1 - Высота, медиана.
2) тр. COH - прямоугольный
По теореме Пифагора - CH^2 + OH^2 = OC^2
3^2 + 5^2 = OC^2
OC = R = кор из 34
3) Тр. H1OD - прямоугольный, OD^2 = OH1^2 + H1D^2
H1D^2 = OD^2 - OH1^2 = 34 - 4^2 = 18
H1D = 3 корня из двух
AD = 6 корней из двух
В итоге получаем, что вторая хорда равна шесть корней из двух, это и есть ответц) Только мне не очень понятно, зачем же дана перпендикулярность хорд. =)
Дана пирамида ABCDO с вершиной О и высотой ОК.
ОК= 7 см. В основании пирамиды правильный четырехугольник - квадрат, следовательно АВ=ВС=СD=DA=8см.
Проведем высоту КМ от точки К к стороне АВ.
Рассмотрим треугольник ОКМ - прямоугольный (т.к. ОК - высота).
КМ=4 см (т.к. КМ=1/2 AD)
ОМ в квадрате = ОК в квадрате + КМ в квадрате
ОМ= корень из 65 см
Рассмотрим треугольник ОМА - прямоугольный.
АО в квадрате = МО в квадрате + МА в квадрате
АО=9 см.