1) Один очень лёгкий: координаты точки пересечения медиан равны среднему арифметическому координат вершин.
А(-2;3;-6), B(-3;5;2), C(5;1;6),
x(O) = (-2-3+5)/3 = 0.
y(O) = (3+5+1)/3 = 3,
z(O) = (-6+2+6)/3 = 2/3.
Второй основан на свойстве точки пересечения медиан - она делит медиану в отношении 2:1 от вершины.
Находим координаты точки А1 как середины ВС:(B(-3;5;2)+ C(5;1;6))/2.
Точка А1 (середина ВС)
a1x a1y a1z
1 3 4.
Поделим отрезок АА1 в отношении 2:1. А(-2;3;-6), А1(1; 3; 4).
АА1 = (3; 0; 10)
|AA1| = 10,44030651, квадрат 109.
x(О) = xА + (2/3)(АА1) = -2+((2/3)*3) = 0,
y(О) = yА + (2/3)(АА1) = 3+((2/3)*0) = 3,
z(О) = zА + (2/3)(АА1) = -6+((2/3)*10) = (-18+20)/3 = 2/3.
2) Дано: A(3;4;0), B(-4;2;0), C(6;5;0).
Находим центр как точку пересечения медиан.
x(O) = (3-4+6)/3 = 5/3,
y(O) = (4+2+5)/3 = 11/3,
z(O) = 0.
О((5/3; (11/3); 0), D(2;3;8).
Вектор ОД = ((1/3); (-2/3); 8).
Н = √((1/3)² + (-2/3)² + 8²) = √(1/9) + (4/9) + 64) = √581/3 ≈ 8,034647.
В трапецию можно вписать окружность в том случае, если суммы её противоположных сторон равны.
То есть AB + DC = AD + BC.
В случае выполнения данного равенства окружность можно вписать в трапецию и радиус вписанной в трапецию окружности равен половине высоты трапеции.
Таким образом радиус вписанной в трапецию окружности вычисляется по формуле: r = h/2 = √(b*c)/2 = √(4*16)/2 = 8/2 = 4 см.
Здесь: r - радиус вписанной в трапецию окружности ,
h - высота трапеции,
b,c - основания трапеции.
Для проверки можно определить высоту трапеции так.
Из точки С провести отрезок, равный и параллельный АВ.
Получим равнобедренный треугольник с боковыми сторонами по 10 см и основанием 16-4=12 см.
h = √(10² - (12/2)²) = √(100 - 36) = √64 = 8.
r = h/2 = 8/2 = 4 см.
ответ: S = ((4+16)/2)*8 = 80 см².
По условию, МСН = 13°.
1) Сумма острых углов СМН, МСН прямоугольного треугольника НСМ равна 90o. Значит, СМН = 90o - МСН = 90o - 13o = 77o
2) Треугольник АМС равнобедренный, т.к. СМ равна половине гипотенузы по свойству из п.3 "Что необходимо знать для решения", а АМ равна половине гипотенузы, т.к. СМ - медиана. Отсюда следствие: угол А равен углу АСМ по свойству углов при основании равнобедренного треугольника.
3) Угол СМН внешний по отношению к треугольнику АМС. Он равен сумме двух внутренних А и АСМ, с ним не смежных. Но А = АСМ как углы при основании равнобедренного треугольника. Следовательно, А = АСМ = 77o : 2 = 38,5o
4) Один острый угол А треугольника АВС мы нашли. Теперь найдем второй. Сумма острых углов А, В прямоугольного треугольника АВС равна 90o. Значит, В = 90o - А = 90o - 38,5o = 51,5o
Больший угол равен 51,5o.
ответ: 51,5°