Продолжим стороны АВ и СD до их пересечения в точке D. Угол АЕС=90, т.к. сумма углов ЕАD и EDA равна 90. Рассмотрим треугольники АЕD и ВЕС, они подобны по двум углам (∠ЕСВ=∠ЕDA как соответственные, ∠AED=∠BEC=90). => BE/AE=BC/AD => BE/(13+BE)=12/36 => BE/(13+BE)=1/3 => 3BE=13+BE => 2BE=13 => BE=6,5 Пусть окружность касается прямой CD в точке F, причём точка F может лежать или на стороне или на её продолжении. Отрезок OF перпендикулярен прямой CD как радиус проведённый в точку касания, OA, OB и OF — радиусы. Треугольник AOB — равнобедренный, OH — высота, следовательно, является медианой и биссектрисой. Четырехугольник OHEF — прямоугольник, потому что все его углы прямые. Откуда: R=OF=HE=HB+BE=6,5+6,5=13
а) По условию MD перпендикулярна плоскости квадрата,
АD -проекция АМ на плоскость квадрата.
СD - проекция СМ на плоскость квадрата.
По т. о 3-х перпендикулярах МА⊥АВ, и МС⊥СВ.
Углы МАВ и МСВ прямые,⇒ ∆ МАВ и Δ МСВ прямоугольные.
б) В прямоугольном ∆ МDB катет DB равен MD:tg60°=6:√3=2√3
BD- гипотенуза прямоугольного равнобедренного ∆ ABD, его острые углы=45°.
АВ=ВD•sin45°=2√3•√2/2=√6
в) МD перпендикулярна плоскости квадрата по условию.
В ∆ АВD катет АD является проекцией наклонной АМ на плоскость квадрата.
Гипотенуза DB является проекцией МВ на плоскость квадрата.
АВ - общий катет ∆ АМВ и ΔΔ ADB. ⇒ ∆ ABD является проекцией ∆ MAB на плоскость квадрата.
в) В ∆ МАВ по т. о 3-х перпендикулярах наклонная МА⊥АВ,⇒
∆ МАВ прямоугольный.
Ѕ=AM•AB:2
Из ∆ АМD по т.Пифагора АМ=√(MD²²+AD²²)=√(36+6)=√42
S=√42•√6=√(7•6•6)=6√7 см²