Для двух точек пространства A(3;1;-4) и B(2;4;3) координаты точки M(x;y;z) , которая делит отрезок в отношении λ=1/4, выражаются формулами:
Xm=(Xa+λ*Xb)/(1+λ),
Ym=(Ya+λ*Yb)/(1+λ),
Zm=(Za+λ*Zb)/(1+λ).
Найдем эти координаты:
Xm = (3+(1/4)*2)/(1+(1/4)) = (14/4):(5/4) = 14/5 = 2,8;
Ym = (1+(1/4)*4)/(1+(1/4)) = 2:(5/4) = 8/5 = 1,6;
Zm = (-4+(1/4)*3)/(1+(1/4)) = -(13/4):(5/4) = -13/5 = -2,6.
ответ: М(2,8:1,6:-3).Даны точки А(3;0) и точка B(-3;-1). Найти точку C, делящую AB в отношении 1:3.
в.отв:
-С(1;2)
-С(-4;3)
-С(4;1)
-С(0;-
Объяснение:
1) a) C1D
b) AB + AD + AA1 = AB + BC + CC1 = AC + CC1 = AC1
c) B1C - AD = B1C - B1C1 = C1C
d) |DC1|² = 32 + 32 = 64
|DC1| = 8
2) а) ВА + ВС + ВВ1 + D1A = BA
б) BB1 + CD + A1D1 + D1B = BB (здесь как не заменяй вектора, получается ВВ)
а) AB + CC1 + A1D1 + C1A = AA (тоже самое)
б) AB + AA1 + AD + C1D = AD
3) а) CC1 = AA1 ÷ 12см
СВ = DA = 8 см
СD = BA = 9 см
б) |DC1|² = DD1 + D1C1 = DD1 + DC = 144 + 81 = 225
|DC1| = 15 см
|DB|² = DA + AB = 81 + 64 = 145
|DB| = корень из 145
|DB1|² = AD + BB1 = AD + DD1 = 144 + 64 = 208
|DB1| = 4 корень 13
Фотография ниже.