Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана. 2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.
Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним
Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике ∠ ABС + ∠ BCA + ∠ CAB = 180 º. Отсюда следует ∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD Теорема доказана.
Из теоремы следует: Внешний угол треугольника больше любого угла треугольника, не смежного с ним. 3) Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые. 4) тупоугольный - больше 90 градусов остроугольный - меньше 90 градусов 5) а. Треугольник, у которого один из углов равен 90 градусов. б. Катеты и гипотенуза 6) 6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину. 7) По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов 8) --- тоже самое, что и 7 9) сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон. 10) Сумма углов любого треугольника равна 180 градусам. Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам. Следовательно, сумма двух других острых углов равна 180-90=90 градусов. 11) 1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.
См. ПЕРВЫЙ чертеж. На нем все обозначения. q^2 = R^2 - (m/2)^2; p^2 = r^2 - (m/2)^2; Отсюда (2*m)^2 + (q - p)^2 = (R + r)^2; (это просто теорема Пифагора) 4*m^2 + q^2 + p^2 - 2*q*p = R^2 + r^2 + 2*R*r; 4*m^2 + R^2 + r^2 - m^2/2 - R^2 - r^2 - 2*R*r = 2*q*p; (свожу подобные и делю на 2); (7/4)*m^2 - R*r = q*p; (это возводится в квадрат); (49/16)*m^4 - 2*(7/4)*m^2*R*r + R^2*r^2 = (R^2 -m^2/4)*(r^2 - m^2/4) = = R^2*r^2 - (1/4)*m^2*(R^2 + r^2) + m^2/16; (ясно, что свободные от неизвестного m слагаемые выпадают, и степень понижается :)); 3*m^2 = (7/2)*R*r - (R^2 + r^2)/4; Собственно, это ответ. Его можно "переписывать" в каких-то иных формах, например, так m = (√3/6)*√(16*R*r - (R + r)^2); сути это не меняет. Почему эта задача вызвала такие моральные затруднения, я не понимаю. Арифметику проверяйте! :)
Мне захотелось показать несколько простых ЧУДЕС, которые зарыты в этом условии. См. ВТОРОЙ рисунок, он немного отличается от первого. Семь отличий искать не надо :). Проведена общая внутренняя касательная до пересечения с прямой. Она делит средний (из трех равных) отрезок на части x и m - x; отрезок касательной t; Ясно, что x*(x + m) = t^2 = (m - x)*(m - x + m); откуда легко найти x = m/2; то есть общая внутренняя касательная делит средний отрезок пополам. Это уже НЕЧТО, но есть и дальше :) r^2 + t^2 = p^2 + (x + m/2)^2 = r^2 - m^2/4 + m^2; t^2 = (3/4)^m^2; t = m*√3/2; к сожалению, это не сильно в поиске m :);
Доказательство
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.
Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним
Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике
∠ ABС + ∠ BCA + ∠ CAB = 180 º.
Отсюда следует
∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD
Теорема доказана.
Из теоремы следует:
Внешний угол треугольника больше любого угла треугольника, не смежного с ним.
3) Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые.
4) тупоугольный - больше 90 градусов
остроугольный - меньше 90 градусов
5) а. Треугольник, у которого один из углов равен 90 градусов.
б. Катеты и гипотенуза
6) 6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину.
7) По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов
8) --- тоже самое, что и 7
9) сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.
10) Сумма углов любого треугольника равна 180 градусам.
Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам.
Следовательно, сумма двух других острых углов равна 180-90=90 градусов.
11) 1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.