Искомая площадь - сумма площадей двух сегментов круга, отсекаемых от него ромбом.
Угол СТО опирается на диаметр и равен 90º
Расстояние от точки до прямой - длина отрезка из этой точки, перпендикулярного к этой прямой.
ОТ ⊥ ВС и является расстоянием от О до ВС.
ТО=3 см ( расстояние от точки до прямой - перпендикуляр)
Формула площади сегмента ромба:
S=0,5R²[(πα/180º)-sin α],
где R радиус круга, α - угол сегмента в градусах, π≈3,14
∆ ВОС~∆ ВОТ ( прямоугольные с общим углом при В)
∠ВОТ=∠ВСО
tg∠ВОТ=ВТ:ТО=√3:3=1/√3. Это тангенс 30º
∆ ТО1С равнобедренный.
∠ ТСО₁=∠ СТО₁
∠ ТО₁С=180-2∠ТСО₁
Отсюда ∠ТО₁С=180º-2*30º=120º
Из ∆ ТОС
ОС=ТО:sin30º=3:0,5=6 см
R=ОС:2=3 см
Сумма площадей 2-х сегментов
S=R²[(πα/180º)-sin α],
sin 120º=√3/2
Подставим найденные величины:
S=3²[(π120º/180º)-√3/2]
S=6π-9√3)/2
S=6π-4,5√3≈11,055 см²
-------
В приложении решение дано несколько иное, хотя принцип тот же.
Обозначим вершины этого треугольника АВС с прямым углом С
Точку пересечения биссектрисы из угла А со стороной СВ обозначим М.
Проведем МК, параллельную АС.
Треугольники АВС и КМВ - подобны.
Коэффициент подобия
СВ:МВ= 18:10=9/5
Известно, что площади подобных многоугольников относятся как квадрат коэффициента подобия
Sᐃ АВС:S ᐃ КВМ=81:25
Примем КМ за х, а АС будет 9/5х=1,8х
9 *1,8х:5х*х=81:25
16,2х:5х²=81:25
405х=405х²
х=1см
Sᐃ АВС=18*1,8:2=16,2см²
S ᐃ КВМ=1*10:2=5 см²
Проверка:
16,2:5=81:25
3,24=3,24