В равностороннем треугольнике все стороны равны между собой, все углы равны 60°. а биссектриса является и медианой и высотой. Поэтому она делит такой треугольник на два равных прямоугольных.
Примем сторону треугольника равной а. Тогда высота - один катет, половина стороны - другой катет, сторона - гипотенуза.
По т.Пифагора а²=(a/2)²+h²
откуда а²=4h²/3
Заменив в этом выражение h на 12√3, получим
а²=4•12*•3/3=4•12², откуда
а=√(4•12*)=2•12=24 (ед. длины)
-----------------
Короткое решение:
Биссектриса (медиана, высота) равностороннего треугольника h=а•sin60°, откуда
Пусть E - точка пересечения прямых BC и AD. Если Е не совпадает с D (на чертеже изображен как раз один из таких случаев), то прямоугольные треугольники BED и CED равны по гипотенузе и катету: BD=CD по условию, а ED - общий катет. Отсюда ∠BDE=∠CDE, а т.к. точки A,D,E лежат на одной прямой, то и ∠BDA=∠CDA. (Заметим, что если Е совпала с D, то равенство углов ∠BDA и ∠CDA следует сразу из условия, т.к. BC⊥AD). Далее, треугольники BDA и CDA равны по сторонам и углу между ними (AD - общая, BD=CD по условию, ∠BDA=∠CDA доказали выше), а значит, AB=AC, что и требовалось.
В равностороннем треугольнике все стороны равны между собой, все углы равны 60°. а биссектриса является и медианой и высотой. Поэтому она делит такой треугольник на два равных прямоугольных.
Примем сторону треугольника равной а. Тогда высота - один катет, половина стороны - другой катет, сторона - гипотенуза.
По т.Пифагора а²=(a/2)²+h²
откуда а²=4h²/3
Заменив в этом выражение h на 12√3, получим
а²=4•12*•3/3=4•12², откуда
а=√(4•12*)=2•12=24 (ед. длины)
-----------------
Короткое решение:
Биссектриса (медиана, высота) равностороннего треугольника h=а•sin60°, откуда
a=h:sin60°
a=12√3:(√3/2)=24