Перпендикуляр OM образовывает прямоугольные треугольники AMO и BMO. Для них верно, из теоремы Пифагора: AO^2 = OM^2 + 3^2 BO^2 = OM^2 + 12^2 Но при этом для большого прямоугольного треугольника ABO верно: 15^2 = AO^2 + BO^2 Сложим два первых выражения: AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153 И приравняем со вторым: 225 = 2*OM^2 + 153 2*OM^2 = 225 - 153 = 72 OM^2 = 36 OM = 6 Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO: AO^2 = 36 + 9 = 45 AO = = 3* BO^2 = 36 + 144 = 180 BO = = 6* Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.: S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3* * 6* = 36 * 5 = 180 см^2
Нехай Сейчас ΔАВС - рівнобедреній (АВ = ВС), висоти проведені iз кутів A i С.
АК i CD - висоти, т. Про - точка їx перетин, ∟АОС = 100 °.
Знайдемо куті ΔАВС.
∟DOA = ∟AOC = 180 ° (як суміжні).
∟DOA = 180 ° - 100 ° = 80 °. ∟DOA = ∟КОС = 80 ° (як вертикальні).
Розглянемо ΔАВК. ∟AKB = 90 °, ∟DAO = ∟KCO = 180 ° - (90 ° + 80 °) = 10 °,
∟ВАК = 10 °, тоді ∟АВК = 90 ° - 10 ° = 80 °.
Розглянемо ΔАВС - рівнобедреній, ∟В = 80 °.
∟ВАС = ∟ВСА = (180 ° - 80 °): 2 = 50 °.
Biдповідь: ∟В = 80 °, ∟ВАС = ∟ВСА = 50 °.