ответ: 60°; 15°.
Объяснение:
16) из уравнения окружности следует, что радиус окружности =
V18 = 3V2 = CA = CB
радиус, проведенный в точку касания, перпендикулярен касательной, ---> треугольники СВО и САО -это равные прямоугольные треугольники (по гипотенузе и катету);
СО -биссектриса угла АОВ, т.е. достаточно найти острый угол прямоугольного треугольника (например, СОА) и умножить на 2...
гипотенуза СО -это диагональ квадрата со стороной 6, СО=6V2;
sin(COA) = 3V2 / (6V2) = 1/2
угол СОА = 30°
угол ВОА = 60°
10) прямая у=х -это биссектриса первого и третьего координатных углов, т.е. угол наклона прямой ОВ к оси ОХ 45°; вторая прямая имеет угловой коэффициент k=V3 -это тангенс угла наклона прямой к оси ОХ (можно построить соответствующие прямоугольные треугольники), т.е. угол наклона прямой ОА к оси ОХ 60°;
искомый угол = разности этих углов 60°-45°=15°.
Даны две точки A и B, имеющие конкретные координаты.
Точка М имеет переменные координаты х и у: М(х; у).
Если обе части заданного выражения BM²- AM² = 2AB² разделить на 2AB², то получим уравнение:
(BM²/2AB²) - (AM²/2AB²) = 1.
Если в этом уравнении разнести координаты по х и по у, то получится уравнение гиперболы.
Выразим отрезки АМ, ВМ и АВ через координаты.
АМ = √((хМ - хА)² + (уМ - уА)²).
ВМ = √((хМ - хВ)² + (уМ - уВ)²).
АВ = √((хВ - хА)² + (уВ - уА)²).
Заданное множество точек соответствует уравнению:
((хМ - хА)² + (уМ - уА)²) - ((хМ - хВ)² + (уМ - уВ)²) =
= 2*((хВ - хА)² + (уВ - уА)²).
Если бы были известны координаты точек, то можно было бы определить уравнение для конкретных условий.