1. Рассмотрим параллелограмм ABCD. Диагональ AC разделяет его на два треугольника: ABC и ADC. Эти треугольники равны по стороне и двум прилежащим углам (AC-общая сторона, угол 1=углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечении секущей AC и CD, AD и BC соответственно). Поэтому AB=CD, AD= BC и угол B=углу D. Далее, пользуясь равенствами углов 1 и 2, 3 и 4, получаем угол A=углу 1+угол 3=угол 2+угол 4=углу C. 2. Пусть О-точка пересечения диагоналей AC и BD параллелограмма ABCD. Треугольники AOB и COD равны по стороне и двум прилежащим углам (AB=CD как противоположные стороны параллелограмма, угол 1= углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечение параллельных прямых AB и CD секущими AC и BD соответсвенно). Поэтому AO=OC и OB=OD, что и требовалось доказать
Задача элементарная, но мне захотелось написать "совершенно" формальное решение. Пусть центр квадрата P, середина (это так надо перевести слово "серебро" в контексте задачи :)) BC - M. Ясно, что центр окружности лежит на прямой, параллельной BC и AD и проходящей через середину MP - точку K. Пусть эта прямая пересекает AB в точке N. Поскольку окружность симметрична относительно KN, то PK и AN - это половины хорд, перпендикулярных линии KN, проходящей через центр. Ясно, что AN = 3a/4; PK = a/4; NK = a/2; где a - сторона квадрата. Расстояние до хорды связано с радиусом и половиной длины хорды теоремой Пифагора. Разность расстояний от центра до ПОЛУхорд AN и PK равна NK; Если обозначить радиус окружности R, то √(R^2 - (a/4)^2) - √(R^2 - (3a/4)^2) = a/2; пусть 4R/a = x; тогда √(x^2 - 1) = √(x^2 - 9) + 2; x^2 - 1 = x^2 - 9 + 4√(x^2 - 9) + 4; x^2 - 9 = 1; x = √10; ну, и 4/a = 2; R = √10/2;
Разумеется, это простое упражнение на координатный метод. По сути надо найти окружность, проходящую через точки (0,1) (0,-1) и (-2,-3) для квадрата со стороной 4; Центр в точке (b,0) b^2 + 1 = R^2; (b + 2)^2 + 3^2 = R^2; b = -3; R = √10; это результат для квадрата со стороной a =4; то есть при a = 2; R = √10/2;
ответ:Корче пиши 95 потому что ты крутой чел -
95
Объяснение: