ABC -- нижнее основание, A1B1C1 -- верхнее основание, D -- проекция точки C1 на плоскость основания ABC, C1D -- высота призмы, C1CD=45°
AA1C1C и BB1C1C -- ромбы с острым углом 30°, AA1B1B -- квадрат
Из треугольника C1DC:
sin C1CD = C1D/C1C
sin(45°)=4*корень(2) / C1C
С1С=4*корень(2)/sin(45°)=4*корень(2)/(корень(2)/2)=4*2=8
Так как все боковые грани -- ромбы (квадрат -- это тоже ромб), то длины всех рёбер призмы равны между собой, следовательно, они равны 8.
Площадь боковой поверхности равна сумме площадей ромбов и квадрата.
Sромба=AC*AA1*sin(30°)=8*8*1/2=32
Sквадрата=AB*AA1=8*8=64
Sбок=2*Sромба+Sквадрата=2*32+64=128
Если в треугольной пирамиде DABC все плоские углы при вершине D-прямые, то надо её перевернуть, чтобы основанием была грань DАВ. Тогда расстояние между прямыми AC и DB будет лежать в плоскости грани DСА как перпендикулярной к прямой DB.
DС =V(41 - 4^2) = V25 = 5
AC = V(12^2 + 5^2) = V(144 + 25) = V169 = 13.
Расстояние Н можно определить из площади треугольника DCA: S = 1/2*5*12 = 30
30 = 1/2*H*13 H = 60 / 13 = 4,615.