Пусть точка М лежит на стороне АВ, точка К на стороне ВС, точка Р на FM, а точка Е на FK Соединим точки М и К получился отрезок МК и прямоугльный ∆ВМК, у которого с ∆АВС общий прямой угол В и ВМ и ВК - катеты, а МК - гипотенуза. Так как точки М и К взяты с середин сторон, то ВМ=6÷2=3см, а ВК=8÷2=4см. Найдём гипотенузу МК по теореме Пифагора:
МК²=ВМ²+ВК²=3²+4²=9+16=25; МК=√25=5см.
Рассмотрим полученный ∆МFE. Так как Р и Е - середины отрезков FM и FK, то РЕ параллельна МК и является её средней линией, и по свойствам средней линией треугольника РЕ=½МК=5/2=2,5см
) Построение равнобедренного треугольника по основанию и боковой стороне. 1. Проводим прямую "а". 2. Замеряем циркулем длину данного нам основания. 3. Откладываем на прямой "а" от произвольной точки А отрезок АС, равный данному основанию. 3. Замеряем циркулем длину данной нам боковой стороны. 4. Устанавливаем ножку циркуля в точку А и радиусом, равным АВ, делаем дугу над прямой "а". 5. Устанавливаем ножку циркуля в точку С и радиусом, равным АВ, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В. 6. Соединяем точки А,В и с. Получен искомый треугольник. 2) Этот же алгоритм и для построения треугольника по трем сторонам. Только в пунктах 1,2 и 3 откладываем на прямой "а" ПЕРВУЮ сторону треугольника. В пункте 4 работаем со ВТОРОЙ стороной, то есть устанавливаем ножку циркуля в точку А и радиусом, равным длине ВТОРОЙ стороны, делаем дугу над прямой "а". В пункте 5 работаем с ТРЕТЬЕЙ стороной, то есть устанавливаем ножку циркуля в точку С и радиусом, равным длине ТРЕТЬЕЙ стороны, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.
Объяснение:
Пусть точка М лежит на стороне АВ, точка К на стороне ВС, точка Р на FM, а точка Е на FK Соединим точки М и К получился отрезок МК и прямоугльный ∆ВМК, у которого с ∆АВС общий прямой угол В и ВМ и ВК - катеты, а МК - гипотенуза. Так как точки М и К взяты с середин сторон, то ВМ=6÷2=3см, а ВК=8÷2=4см. Найдём гипотенузу МК по теореме Пифагора:
МК²=ВМ²+ВК²=3²+4²=9+16=25; МК=√25=5см.
Рассмотрим полученный ∆МFE. Так как Р и Е - середины отрезков FM и FK, то РЕ параллельна МК и является её средней линией, и по свойствам средней линией треугольника РЕ=½МК=5/2=2,5см
ответ: РЕ=2,5см