S(amb)=S(bmc) => S(amb = 1/2 S(abc)
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12
S(abc)/S(kpcm)=1 S(abc)/5/12 S(abc)=12/5
Пусть S - площадь тр АВС
Пл АВМ = пл СВМ = 1/2 S так как медиана делит треуг на равновеликие
В треуг МАВ отрезок АК - тоже медиана т.к. К - середина ВМ
тогда
Пл АВК = пл МАК = 1/2 пл АВМ = 1/2 * 1/2 * S = 1/4 S
Пл КРСМ = Пл ВСМ - пл ВРК
КР = 1/4 АР ( это очевидно если провести среднюю линии через М параллельно СВ т.к. средняя линия делит АР пополам, а К середина ВМ то К делит половину АР тоже пополам)
Тогда площадь ВКР / площадь ВАК = 1/3 (так как у них общая высота а основания КР/КА = 1/3 )
Тогда пл ВКР = 1/3 * пл АВК = 1/3 * 1/4 * S = 1/12 * S
Тогда Пл КРСМ = Пл ВСМ - пл ВРК = 1/2 * S - 1/12 * S = 5/12 * S
Теперь можно найти отношение площади треугольника ABK к площади четырёхугольника KPCM = ( 1/4* S ) / (5/12 * S) = 3/5
ответ 3/5