Средняя линия трапеции - это отрезок, соединяющий середины боковых сторон трапеции и проходящий параллельно ее основаниям.
Пусть в трапеции АВСD средняя линия EF пересекает диагонали трапеции АС и ВD в точках М и N соответственно. Тогда в треугольнике АВС отрезок ЕМ является средней линией, поскольку ЕМ║ВС как часть средней линии трапеции и точка Е - середина стороны АВ.
Следовательно, Сторона АС треугольника точкой М делится пополам.
Аналогично в треугольнике ВCD отрезок NF - средняя линия и делит сторону BD пополам.
Таким образом, доказано, что средняя линия трапеции делит ее диагонали пополам, то есть проходит через их середины, что и требовалось доказать.
АЛ=КД=х, АМ=АЛ+ЛМ=х+1,5=АР, АВ=АР+РВ=(х+1,5)+1,5=х+3
ВЛ в квадрате = АВ в квадрате - АЛ в квадрате
36 = х в квадрате + 6х + 9 - х в квадрате
х=4,5= АЛ=КД, АД=4,5+1,5+4,5+1,5=12
Площадь = (ВС+АД)/2 * ВЛ= (3+12)/2 * 6 = 45