Похоже, это задача-ловушка или дана с ошибкой. Определение: МНОГОУГОЛЬНИК - плоская геометрическая фигура с тремя или более сторонами, пересекающимися в трех или более точках (вершинах). Минимальное количество сторон многоугольника - три. Если его углы равны, то не могут быть меньше 60 градусов. Как известно, сумма углов треугольника 180 градусов. Поэтому не может быть такого многоугольника, где каждый угол равен 1) 18° 2) 12° 3) 30°. Возможно, речь идет о внешних углах многоугольника. Тогда решение будет таким: Сумма всех внешних углов многоугольника 360°. Каждый внешний угол со смежным ему внутренним составляет развернутый угол с градусной мерой 180° Если внешний угол 18°, то сторон у многоугольника 360°:18°=20 сторон Если внешний угол 12°, то 360°:12°=30 сторон Если 30°, то 360°:30°=12 сторон
3) Поставьте на конце диаметра ВО точку Д. Диаметр ВД делит окружность на две равные дуги: ∪ВАД = ∪ВСД = 180°.
Равные хорды окружности отделяют равные дуги ⇒ ∪ВА=∪ВС,
тогда ∪АД=180°-∪ВА, ∪СД=180°-∪ВС=180°-∪ВА , получили, что
∪АД=∪СД. Но на эти равные дуги опираются вписанные углы
∠1 и ∠2 ⇒∠1 =∠2 . Ч.т.д.
6) Соединим точки О и А, а также О и В.
ΔОАК=ΔОВК по гипотенузе и катету (∠ОКА=∠ОКВ=90° по условию,ОА=ОВ как радиусы одной окружности, ОК- общий катет).
Из равенства треугольников следует, что КА=КВ. Ч.т.д.
2) ΔОКА=ΔОКВ по третьему признаку равенства треугольников
(АК=КВ по условию, ОК- общая сторона, ОА=ОВ как радиусы одной окружности).
Из равенства треугольников следует, что ∠ОКА=∠ОКВ, но
∠ОКА и ∠ОКВ- смежные и ∠ОКА+∠ОКВ=180° по свойству смежных углов ⇒ ∠ОКА=∠ОКВ=180°:2=90°. Ч.т.д.