1)BD высота по условию, значит в треугольник по одному равному углу. Сумма двух других углов=90 градусов. Если ∠CBD больше ∠ABD, то
∠C меньше ∠A⇒ CB больше AB.
2)В треугольнике ВМА угол ВАМ больше угла ВМА. (т.к. в любом треугольнике против большей стороны лежит больший угол и по условию ВМ>АВ)
Для треугольника ВМС угол ВМА является внешним и равен сумме внутренних углов треугольника ВМС, не смежных с ним. Т.е. угол ВМА больше угла ВСМ
Итак угол ВАМ > угла ВМА > угла ВСМ.
Значит, А > C.
3)Угол А в 2 раза меньше внешнего угла ВСК, то есть
∠А=α , ∠ВСК=2α.
Внешний угол треугольника = сумме двух внутренних углов, не смежных с ним. Значит, ∠ВСК=∠А+∠В ⇒ 2α=α+∠В ⇒ ∠В=α .
Получаем треугольник, у которого равны два угла, значит, треугольник равнобедренный ( углы при основании треугольника равны ).
4)7 треугольников
Объяснение:
Равносторонний:
S=(a²*√3)/4
a - сторона
Прямоугольный:
S=1/2*c*h(c)
c - гипотенуза
h(c) - высота к гипотенузе
S=1/2*a*b
a - сторона
b - сторона
С разными сторонами:
S=1/2*a*h(a)
a- сторона
h(a) - высота к стороне a
S=√p*(p-a)*(p-b)*(p-c)
p - полупериметр
a, b, с - стороны
S=p*r
p - полупериметр
r - радиус вписанной окружности
S=(a*b*c)/4*R
a, b, c - стороны
R - радиус описанной окружности
хоть и просили без синуса, но все же напишу:
S=1/2*a*b*Sinα
a,b - стороны
Sin α - синус угла A
a||c, b||d
Объяснение:
⊥-перпендикуляр