Чертим два равных отрезка АВ и СД (для ясности :А- слева внизу, С- слева вверху, Д- справа внизу, В- справа вверху) По условию они равны, и делятся пополам точкой пересечения О. Значит все эти половинки равны между собой (АО=ОВ=СО= ОД) .По усл. АО=АД, значит АО=ОД=АД, т. е., тр-к АОД - равносторонний, и все его углы равны между собой и равны по 60 гр. (ещё надо отметить, что по условию АД дан. Пусть АД= "а".Это некое известное число . Задание а) - готово? Да.
б) Рассмотрим два образовавшихся тр-ка АОД и СОВ . Они равны, т. к. две стороны АО=ОВ и СО=ОД и углы между ними СОВ и АОД вертикальные, а значит равны между собой. Если тр-ки равны, то равны соответствующие углы. В данном случае тр-к СОБ тоже равносторонний. и его все углы= 60град. Т. е. отрезок АВ пересекает две прямые :СВ и АД, угол СВО=углу ДАО и являются внутренними накрест лежащими. Значит, по свойствам параллельности прямых, АД параллельна ВС.
в) теперь проводим Медиану ОМ в треугольнике АОД, т. к. т. М - середина АД ( по условию). В правильном треугольнике АОД медиана ОМ является и биссектрисой. Поэтому угол ДОМ = 30град. Надо сравнить ОМ и ОС. Но ОС=ОД. МД=а/2; Отношение противолежащего катета к гипотенузе -это sin угла. МД/СО или МД/ДО, как sin 30град. = 1/2;
г) проводим биссектрисы из углов ВСО и ДАО они пересекутся в некоторой т. Е. Соединим т. А с т. С. Получился тр-к АСЕ; , у которого надо найти угол АЕС. Сначала рассм. тр-к АОС Он равнобедренный (АО = ОС). Угол АОС= 180-60=120 гр. Значит сумма двух остальных углов, находящихся при основании равнобедренного тр-ка равна 180-120=60. Но углы при основании равнобедренного трка равны между собой .АСО= САО=60/2=30 град. Теперь, вспоминаем, что биссектриса в тр-ке делит угол пополам. Угол ОСЕ= ВСЕ=30 гр. Тоже самое и угол ОАЕ=ДАЕ=30гр. Но угол АСЕ=АСО+ОСЕ=30+30=60гр. Угол САЕ=60гр. тоже. Ну и искомый угол АЕС равен 180-60-60=60гр.
д) продлим МО до пересечения с СВ и поставим т. Н. В правильном треугольнике медиана является не только биссектрисой, но и высотой. Но треугольники АОД и СОВ равны между собой, значит равны и их высоты ОМ и ОН. А значит точка О является серединой отрезка МН. ВСЁ!)
1)Треугольники подобны ⇒ и у другого треугольника стороныотносятся как 3х/4х/5х. Большая сторона - 5х, и она равна 15.
15=5х
х=3
тогда первая сторона 3х=9, вторая 4х=12
Периметр равен:9+12+15=36
ответ:36
2)Больший катет лежит против большего отрезка гипотенузы. По свойству катет в прямоугольном треугольнике есть среднее геометрическое между гипотенузой (16+9=25см) и его проекцией на гипотенузу (16см)
х=√(25*16)=20см
ответ:20см
3)Рисунок внизу.
В ΔABD по теореме косинусов:
cosABC=(AB²+BD²-AD²)/(2AB*BD)=(16+1-12,25)/(2*4*1)=4,75/8
В ΔABC по теореме косинусов:
AC²=AB²+BC²-2*AB*BC*cosABC=16+256-2*4*16*4,75/8=196
AC=14
ответ:14