Найдём гипотенузу из Пифагоровой тройки 5 12 и 13 Гипотенуза 13.Центр вписанной окружности- это точка пересечения биссектрис. Найдём радиус r=s\p где р- полупериметр r=12*5\2*15=2 2 это радиус вписанной окружности. Окружность касается катетов в точке отстоящей от меньшего острого угла на 9 дм а от большего на 4 дм . Из прямоугольных треугольников находим расстояния . Они являются гипотенузами в прямоугольных треугольниках Корень из 81 +4 т.е корень из 85 это от меньшего угла. Корень из 14+2 т.е. корень из 20 это до большего угла.
Сделаем рисунок. Проведем в треугольнике АВС еще одну высоту СЕ. СЕ=АН, так как треугольник АВС равнобедренный, и высоты к равным сторонам равны. Поэтому ЕК=3, КС=5 Из треугольника АЕК можно найти АЕ по т. Пифагора, но этот треугольник египетский, и АЕ равна 4. ВМ - высота, медиана и биссектриса равнобедренного треугольника АВС. Биссектриса треугольника делит сторону, которую пересекает, на отрезки, пропорциональные прилежащим сторонам. ВК делит в треугольнике АВН сторону АН в отношении, равном отношению АК:КН АВ:ВН=АК:КН=5:3 АВ:ВН=5:3 3АВ=5ВЕ. Так как ВН=ВЕ, АВ=ВН+4 3(ВН+4)=5ВН 3ВН+12=5 ВН 2ВН=12см ВН=6см АВ=ВН+4=6+4=10см SАВК=КЕ*АВ:2=3*10:2=15см².
Найдём гипотенузу из Пифагоровой тройки 5 12 и 13 Гипотенуза 13.Центр вписанной окружности- это точка пересечения биссектрис. Найдём радиус r=s\p где р- полупериметр r=12*5\2*15=2 2 это радиус вписанной окружности. Окружность касается катетов в точке отстоящей от меньшего острого угла на 9 дм а от большего на 4 дм . Из прямоугольных треугольников находим расстояния . Они являются гипотенузами в прямоугольных треугольниках Корень из 81 +4 т.е корень из 85 это от меньшего угла. Корень из 14+2 т.е. корень из 20 это до большего угла.
Подробнее - на -