Правило: "Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое)". В нашем случае (все вектора): ВМ=ВА+АМ ( по правилу суммы). ВА=ОА-ОВ (по правилу разности). АМ= (1/2)*АС. АС=ОС-ОА. Тогда ВМ=ОА-ОВ+(1/2)(ОС-ОА) или ВМ=а - b +(1/2)*c-(1/2)*a = (1/2)(a+c) - b. ответ: ВМ=(1/2)(a+c)-b.
Или так: Пусть точка Р - середина вектора ОС. Проведем прямую РМ - средняя линия треугольника АОС. РМ=(1/2)*ОА = (1/2)*а. Тогда ОМ= ОР+РМ = (1/2)*ОС +(1/2)а. ВМ=ОМ-ОВ = (1/2)(с+а) - b. ответ: ВМ=(1/2)(a+c)-b.
bc=b1c1, и am, a1m1 - медианы, то bm=cm=b1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - am=a1m1 по условию; - bm=b1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы amc и a1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники amc и a1m1c1 будут равны по двум сторонам и углу между ними: - am=a1m1 по условию; - сm=c1m1 как было показано выше; - углы amc и a1m1c1 равны как доказано выше. У равных треугольников amc и a1m1c1 равны соответственные стороны ac и a1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности. радиус описанной около произвольного треугольника окружности вычисляется по формуле: AC=1, BC=2, <C=60°. AB=? по теореме косинусов: AB²=AC²+BC²-2*AC*Bc*cos<C AB²=1²+2²-2*1*2*cos60° AB²=3, AB=√3
прямоугольный треугольник: гипотенуза с=√13 - боковое ребро пирамиды катет а=√3 радиус описанной около треугольника окружности катет Н -высота пирамиды, найти по теореме Пифагора: c²=a²+H², H²=(√13)²-(√3)². H=√10
В нашем случае (все вектора):
ВМ=ВА+АМ ( по правилу суммы).
ВА=ОА-ОВ (по правилу разности).
АМ= (1/2)*АС.
АС=ОС-ОА. Тогда
ВМ=ОА-ОВ+(1/2)(ОС-ОА) или
ВМ=а - b +(1/2)*c-(1/2)*a = (1/2)(a+c) - b.
ответ: ВМ=(1/2)(a+c)-b.
Или так:
Пусть точка Р - середина вектора ОС.
Проведем прямую РМ - средняя линия треугольника АОС.
РМ=(1/2)*ОА = (1/2)*а. Тогда
ОМ= ОР+РМ = (1/2)*ОС +(1/2)а.
ВМ=ОМ-ОВ = (1/2)(с+а) - b.
ответ: ВМ=(1/2)(a+c)-b.