М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
oksankavdovina
oksankavdovina
25.03.2020 01:55 •  Геометрия

Треугольник ABC в гомотетии отображается в треугольнике A1B1C1 AB-7, BC-18,AC-23 найдите длину короткой стороны треугольника A1B1C1 если длина длиной стороны этого треугольника равна 115​

👇
Открыть все ответы
Ответ:
pavlova62
pavlova62
25.03.2020
Дано:

Правильная четырёхугольная пирамида FABCD.

AB=6 (см).

FG=7 (см).

Найти:

S_{(n. \: no_Bepx.)}=? (см²).

Решение:

\boxed{S_{(n. \: no_Bepx.)}=S_{(oc_Ho_B.)}+S_{(6o_K. \: no_Bepx.)}}

Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.

В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому S_{(_k_B.)}=a^2=6^2=36 (см²).

Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.

Значит нам нужно сначала найти апофему нашей пирамиды.

1 правило: Апофема делит сторону основания пополам.2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.

Объяснение 1 правила: из этого следует, что апофема FH делит сторону основания DC так, что DH=HC=\dfrac{6}{2}=3 (см).

Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный \triangle FGH, где FG - катет прямоугольного тр-ка (высота пирамиды); GH - катет прямоугольного тр-ка; FH - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что DH=HC=GH=3 (см).

Так как апофема FH нашей пирамиды является ещё и гипотенузой прямоугольного \triangle FGH, то мы сможем найти её величину по т.Пифагора:

FH=\sqrt{FG^2+GH^2}=\sqrt{7^2+3^2}=\sqrt{49+9}=\sqrt{58} (см).

Теперь найдём периметр основания (квадрата):

P=4a=6\cdot4=24 (см).

Затем найдём площадь боковой поверхности:

S_{(6ok. \: no_B.)} =P_{(oc_Ho_B.)}\cdot\dfrac{1}{2}\cdot FH=24\cdot\dfrac{1}{2}\cdot\sqrt{58}=12\sqrt{58} (см²).

Остаётся найти ответ на вопрос: "Чему равна площадь полной поверхности пирамиды?"

S_{(n. \: no_Bepx.)}=\boxed{36+12\sqrt{58}} (см²).

ответ: \boxed{S_{(n. \: no_Bepx.)}=36+12\sqrt{58}} (см²).
Вправильной четырехугольной пирамиде сторона основания равна 6 см, а высота пирамиды равна 7см. вычи
4,4(70 оценок)
Ответ:
cristinapavlova
cristinapavlova
25.03.2020
Однажды под Рождество, произошло настоящее волшебство, но только в реальной жизни.
Девочка Маша с самого рождения жила в детском доме. У неё никогда не было красивых платьев, игрушек. Но ей этого не сильно и хотелось. Каждый год, в течение 10 лет она загадывала одно и тоже желание. Ей хотелось обрести семью. Ей хотелось чтобы у неё была мама и был папа.И вот наконец, случилось чудо под Рождество. За Машей пришли родители, которые забрали её в новый, красивый, тёплый дом. Где они стали втроём жить. Мама,папа и Маша. И с этого момента у них началась настоящая счастливая жизнь.
4,8(42 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ