а) Пусть угол В равен х градусов, тогда угол А равен х/4 градусов (если в ... раз меньше, то надо разделить), а угол С равен (х - 90) градусов (если на ... меньше, то надо вычесть). Сумма углов треугольника равна (х + х/4 + (х - 90)) градусов или 180° ( по теореме о сумме углов треугольника). Составим уравнение и решим его.
х + х/4 + (х - 90) = 180;
х + 0,25х + х - 90 = 180;
2,25х - 90 = 180;
2,25х = 180 + 90;
2,25х = 270;
х = 270 : 2,25;
х = 120° - угол В;
х/4 = 120°/4 = 30° - угол А;
х - 90 = 120° - 90° = 30°.
ответ. ∠A = 30°; ∠B = 120°; ∠C = 30°.
б) Если в треугольнике два угла равны, то этот треугольник будет равнобедренным. Угол В равен 120°. Напротив этого угла лежит сторона АС, которая будет основанием. Две другие стороны треугольника АВ и ВС будут боковыми сторонами. Боковые стороны равнобедренного треугольника равны.
ответ. АВ = ВС.
Площадь полной поверхности призмы равна сумме площадей двух её оснований и площади боковой поверхности.
Боковые грани прямой призмы - прямоугольники. Площадь боковой поверхности равна периметру основания, умноженному на высоту призмы.
S=P•h=(10+12+20)•3=126 (ед. площади)
Площадь основания - площадь трапеции АВСD.
Высота равнобедренной трапеции, проведенная из тупого угла, делит большее основание на отрезки, меньший из которых равен полуразности, больший - полусумме оснований.
АН=(АD-BC):2=8:2=4
НВ=(AD+DC):2=32:2=16
Из ∆ АВН по т.Пифагора ( или обратив внимание на то, что ∆ АВН - египетский) находим ВН=3
S осн=3•16=48 Оснований у призмы 2.
S полн=126+2•48=222 (ед. площади)